Variance function partially linear single-index models
نویسندگان
چکیده
We consider heteroscedastic regression models where the mean function is a partially linear single-index model and the variance function depends on a generalized partially linear single-index model.We do not insist that the variance function depends only on the mean function, as happens in the classical generalized partially linear single-index model.We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and non-parametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to illustrate the results further and is shown to be a case where the variance function does not depend on the mean function.
منابع مشابه
Estimation in Partially Linear Single-Index Panel Data Models with Fixed Effects
In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As...
متن کاملGeneralized Partially Linear Single-Index Models
The typical generalized linear model for a regression of a response Y on predictors (X;Z) has conditional mean function based upon a linear combination of (X;Z). We generalize these models to have a nonparametric component, replacing the linear combination T 0 X + T 0 Z by 0( T 0 X) + T 0 Z, where 0( ) is an unknown function. We call these generalized partially linear single-index models (GPLSI...
متن کاملEfficient Estimation in Partially Linear Single-Index Models for Longitudinal Data
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single-index models for longitudinal data which may be unbalanced. In particular, a new three-stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resul...
متن کاملDoubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates.
We study the heteroscedastic partially linear single-index model with an unspecified error variance function, which allows for high dimensional covariates in both the linear and the single-index components of the mean function. We propose a class of consistent estimators of the parameters by using a proper weighting strategy. An interesting finding is that the linearity condition which is widel...
متن کاملQuadratic inference functions for partially linear single-index models with longitudinal data
AMS 2000 subject classifications: 62G05 62G10 62G20 Keywords: Bias correction Generalized likelihood ratio Longitudinal data Partially linear single-index models QIF a b s t r a c t In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounti...
متن کامل